

ENA Engineering Recommendation G98/NI

Issue 1 - 2019

MATERIALS & SAFETY - R&D

TR 31317

page 1 of 19

FORM C TYPE TEST VERIFICATION REPORT

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

Manufacturer's reference number		Fronius Symo GEN24			
Micro-generato	r technolo	ogy	transformerless		
Manufacturer n	ame		Froni	us International G	mbH
Address				ter Fronius Str 1 Wels-Thalheim, A	Austria
Tel	+43-7242	2-241-0		Fax	+43-7242-241-224
E:mail	pv@fron	ius.com		Web site	www.fronius.com
				Connection O	ption
Registered Cap	acity.		kW single phase, single, split or three phase system		e, split or three phase system
use separate sh more than one		4	kW three phase		
connection optic	n.		kW two phases in three phase system		
			kW two phases split phase system		
Type Tested reaction this document,	ference n prior to s	umber will be manufa	actured that no	and tested to en	ed by the company with the above sure that they perform as stated in ns are required to ensure that the
Signed FRONTUS INFERNATIONAL GABH Guntar Frontus of the Contract of the Contra		On be	ehalf of	Fronius International GmbH	
Note that testing can be done by the Manufacturer of an individual component or by an external te house.					component or by an external test

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Fronius	ENA Engineering Recomme	endation G98/NI Issue 1 – 2019
MATERIALS & SAFETY - R&D	TR 31317	page 2 of 19

MATERIALS & SAFETY - R&D

page 3 of 19

Operating Range: This test should be carried out as specified in EN 50438 D.3.1. Active Power shall be recorded every second. The tests will verify that the Micro-generator can operate within the required ranges for the specified period of time. The Interface Protection shall be disabled during the tests. In case of a PV **Micro-generator** the PV primary source may be replaced by a **DC** source. In case of a full converter Micro-generator (e.g. wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source. In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor. Test 1 Voltage = 85% of nominal (195.5 V) Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes Test 2 Voltage = 110% of nominal (253 V). Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes Test 3 Voltage = 110% of nominal (253 V). Frequency = 52.0 HzPower factor = 1Period of test 15 minutes Remark: During the tests 1, 2 and 3 the unit does not disconnect, tests have been passed.

TR 31317

MATERIALS & SAFETY - R&D

TR 31317

page 4 of 19

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

				l 61000-3-2 Pha	ise 1	
Micro-gei	nerator rating pe	er phase (rpp)	1,366	kW		
Harmonic	At 45-55% of Capa			Registered acity		
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.001		0.002		1.080	
3	0.002		0.001		2.300	
4	0.002		0.002		0.430	
5	0.002		0.002		1.140	
6	0.001		0.001		0.300	
7	0.002		0.003		0.770	
8	0.001		0.001		0.230	
9	0.001		0.002		0.400	
10	0.001		0.001		0.184	
11	0.013		0.021		0.330	
12	0.001		0.001		0.153	
13	0.008		0.018		0.210	
14	0.001		0.001		0.131	
15	0.001		0.002		0.150	
16	0.001		0.001		0.115	
17	0.004		0.014		0.132	
18	0.001		0.001		0.102	
19	0.006		0.012		0.118	

MATERIA	LS & SAFETY -	- R&D	TR 31317		page 5 of 19	
20	0.001		0.001			
				0.092		
	0.001		0.001		0.160	
21				0.107		

ENA Engineering Recommendation G98/NI

Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31317

page 6 of 19

22	0.001	0.001	0.084	
23	0.008	0.008	0.098	0.147
24	0.001	0.001	0.038	
25	0.008	0.006	0.090	0.135
26	0.001	0.001	0.071	
27	0.001	0.001	0.083	0.124
28	0.001	0.001	0.066	
29	0.007	0.005	0.078	0.117
30	0.001	0.002	0.061	
31	0.005	0.005	0.073	0.109
32	0.001	0.001	0.058	
33	0.002	0.001	0.068	0.102
34	0.001	0.001	0.054	
35	0.004	0.007	0.064	0.096
36	0.001	0.002	0.051	
37	0.005	0.007	0.061	0.091
38	0.002	0.003	0.048	
39	0.001	0.001	0.058	0.087
40	0.001	0.001	0.046	
these hig		d harmonics 21 and above are only a d please state the exemption used a		

MATERIALS & SAFETY - R&D

TR 31317

page 7 of 19

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

			tested to BS EN	l 61000-3-2 Pha	se 2	
Micro-ger	nerator rating pe	er phase (rpp)	1,341	kW		
Harmonic	At 45-55% of Capa			Registered acity		
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.002		0.00		1.080	
3	0.004		0.00		2.300	
4	0.002		0.00		0.430	
5	0.002		0.00		1.140	
6	0.001		0.00		0.300	
7	0.002		0.00		0.770	
8	0.001		0.00		0.230	
9	0.001		0.00		0.400	
10	0.001		0.00		0.184	
11	0.013		0.02		0.330	
12	0.001		0.00		0.153	
13	0.007		0.02		0.210	
14	0.001		0.00		0.131	
15	0.001		0.00		0.150	
16	0.001		0.00		0.115	
17	0.004		0.01		0.132	
18	0.001		0.00		0.102	
19	0.006		0.01		0.118	

page 8 of 19

MATERIA	LS & SAFETY ·	- R&D	TR 31317	,		page 8 of 19	
20	0.001		0.00				
20					0.092		
	0.001		0.00			0.160	
21					0.107		

MATERIALS & SAFETY - R&D

TR 31317

page 9 of 19

22	0.001	0.00		
~~			0.084	
23	0.008	0.01	0.098	0.147
24	0.001	0.00	0.077	
25	0.008	0.01	0.090	0.135
26	0.001	0.00	0.071	
27	0.001	0.00	0.083	0.124
28	0.001	0.00	0.066	
29	0.006	0.01	0.078	0.117
30	0.001	0.00	0.061	
31	0.004	0.01	0.073	0.109
32	0.001	0.00	0.058	
33	0.001	0.00	0.068	0.102
34	0.001	0.00	0.054	
35	0.003	0.01	0.064	0.096
36	0.001	0.00	0.051	
37	0.004	0.01	0.061	0.091
38	0.002	0.00	0.048	
39	0.001	0.00	0.058	0.087
40	0.001	0.00	0.046	
these hig		odd harmonics 21 and above are c lised please state the exemption us w.	only allowable under ce	

MATERIALS & SAFETY - R&D

TR 31317

page 10 of 19

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

				l 61000-3-2 Pha	se 3	
Micro-gei	nerator rating pe	er phase (rpp)	1,344	kW		
Harmonic	At 45-55% of Capa	Registered		Registered acity		
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.002		0.00		1.080	
3	0.003		0.00		2.300	
4	0.001		0.00		0.430	
5	0.002		0.00		1.140	
6	0.001		0.00		0.300	
7	0.002		0.00		0.770	
8	0.001		0.00		0.230	
9	0.002		0.00		0.400	
10	0.001		0.00		0.184	
11	0.012		0.02		0.330	
12	0.001		0.00		0.153	
13	0.007		0.02		0.210	
14	0.001		0.00		0.131	
15	0.001		0.00		0.150	
16	0.001		0.00		0.115	
17	0.004		0.01		0.132	
18	0.001		0.00		0.102	
19	0.006		0.01		0.118	

MATERIA	LS & SAFETY -	& SAFETY - R&D TR 31317 page		page 11 of 19		
20	0.001		0.00			Γ
20				0.092		
	0.001		0.00		0.160	1
21				0.107		

MATERIALS & SAFETY - R&D

TR 31317

page 12 of 19

22	0.001	0.00	0.084	
	0.008	0.01	0.084	0.147
23	0.008		0.098	0.147
24	0.001	0.00	0.077	
25	0.008	0.01	0.090	0.135
26	0.001	0.00	0.071	
27	0.001	0.00	0.083	0.124
28	0.001	0.00	0.066	
29	0.006	0.01	0.078	0.117
30	0.001	0.00	0.061	
31	0.004	0.01	0.073	0.109
32	0.001	0.00	0.058	
33	0.001	0.00	0.068	0.102
34	0.001	0.00	0.054	
35	0.004	0.01	0.064	0.096
36	0.001	0.00	0.051	
37	0.004	0.01	0.061	0.091
38	0.002	0.00	0.048	
39	0.001	0.00	0.058	0.087
40	0.001	0.00	0.046	
these hi		d harmonics 21 and above are only ad please state the exemption used	allowable under ce	

MATERIALS & SAFETY - R&D

TR 31317

page 13 of 19

Power Quality - Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98/NI Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous) Starting Stopping Running d_{max} $\bar{d}_{(\underline{t})}$ d_c d_{max} $d_{(t)}$ P_{st} P₁2 hours d Measured 0 0 0.65 0.63 0.016 0.078 --Values at test impedance Normalised 0 0 0.65 0.63 0.016 0.078 _ to standard impedance Normalised ----to required maximum impedance Limits set 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 0.65 under BS EN 61000-3-11 R Test 0.24 Х 0.15 Ω 0 Impedance R Х Standard 0.24 * 0.15 * Ω Ω Impedance 0.4^ 0.25^ Maximum R Х Ω Ω _ Impedance

* Applies to three phase and split single phase Micro-generators.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start	12:36	Test end	14:36	22.12.2020
Test location		aboratories, Fronius Internationa is Str 1, A-4600 Wels-Thalheim,	,	

@BCL@EC0FBA7E.doc

MATERIALS & SAFETY - R&D

TR 31317

page 14 of 19

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10							
Test power level	20%	50%	75%	100%			
Recorded value in Amps	0.0063	0.0037	0.0027	0.0066			
as % of rated AC current	0.029	0.029	0.029	0.029			
Limit	0.25%	0.25%	0.25%	0.25%			

Power Quality – Power factor: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test.

	216.2 V	230 V	253 V
20% of Registered Capacity	1.00	1.00	1.00
50% of Registered Capacity	1.00	1.00	1.00
75% of Registered Capacity	1.00	1.00	1.00
100% of Registered Capacity	1.00	1.00	1.00
Limit leading	>0.95	>0.95	>0.95
Limit lagging	>0.98	>0.98	>0.98

will not trip in error.

ENA Engineering Recommendation G98/NI Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31317

page 15 of 19

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests	"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F	48.0 Hz	0.5 s	48.000Hz	0.541s	48.2 Hz 25 s	Confirmed	
					47.8 Hz 0.45 s	Confirmed	
O/F stage 1	52Hz	1.0 s	52.000Hz	1.048s	51.8 Hz 120.0 s	Confirmed	
					52.2 Hz 0.98 s	Confirmed	
a larger deviati	on than the minimu	m required to	uired to trip is the sett o operate the projecti levant times as showr	on can be u	sed. The "No tri	p tests" need to be	

50438 Anr	nex D.2.3 ai	nd the no				ordance with EN A.1.2.2 (Inverter
Function	Setting	`	Trip test		"No trip tes	ts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	195.5 V	3 s	195.94V	3.043s	199.5 V 5.0 s	Confirmed
U/V stage 2	138 V	2 s	138.15V	2.044s	142 V 2.5 s	Confirmed
					134 V 1.98 s	Confirmed
O/V	253V	0.5 s	254.45V	0.545s	249 V 5.0 s	Confirmed
					257 V 0.45 s	Confirmed

deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

ENA Engineering Recommendation G98/NI

Issue 1 – 2019

MATERIALS & S	SAFETY - R&D
---------------	--------------

TR 31317

page 16 of 19

D.2.5 at 10%, 5	5% and 100°	% of rated p	ower.			
To be carried out a				of plus or minu	us 5% in Test F	Power levels.
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 seconds						
For Multi phase	Micro-gene	rators confir	m that the o	device shuts	down corre	ctly after the
removal of a sing	le fuse as we	Il as operatio	n of all phase	S.		-
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3						
fuse removed						
Note for technolog establishing that th 1.0 s for these tech	e trip occurred					
Indicate additiona	al shut down t	ime included	in above resu	ults.		m
For Inverters tes following table.	sted to BS EN	N 62116 the	following sub	set of tests	should be re	corded in the
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip Time. Limit is	186.4 ms	163.6 ms	404.7 ms	208.4 ms	169.9 ms	418.7 ms

Negative Vector Shift

ENA Engineering Recommendation G98/NI Issue 1 – 2019

Confirmed

MATERIALS & SAFETY - R&D

TR 31317

page 17 of 19

Protection - Frequency change, Vector Shift Stability test: This test should be							
carried out in accordance with EREC G98/NI Annex A1 A.1.2.6 (Inverter connected) or							
Annex A2 A.2.2.6 (Syr	Annex A2 A.2.2.6 (Synchronous).						
	Start	Change	Confirm no trip				
Frequency							
Positive Vector Shift	49.5Hz	+50 degrees	Confirmed				

-50 degrees

50.5Hz

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).						
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip			
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed			
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed			

Limited Frequency S carried out in accorda frequency. The test sho Hz and Droop of 4%.	nce with EN	50438 Anne	x D.3.3 Power respon	nse to over-	
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	4050W	50.00Hz			
Step b) 50.25 Hz ±0.05 Hz	4026W	50.25Hz			
Step c) 50.70 Hz ±0.10 Hz	3091W	50.70Hz			
Step d) 51.15 Hz ±0.05 Hz	2163W	51.15Hz	4.2kW	50%/Hz	
Step e) 50.70 Hz ±0.10 Hz	3092W	50.70Hz			
Step f) 50.25 Hz ±0.05 Hz	4027W	50.25Hz			
Step g) 50.00 Hz ±0.01 Hz	4051W	50.00Hz			
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	2051W	50.00Hz			
Step b) 50.25 Hz ±0.05 Hz	2043W	50.25Hz			
Step c) 50.70 Hz ±0.10 Hz	1578W	50.70Hz			
Step d) 51.15 Hz ±0.05 Hz	1103W	51.15Hz	2.2kW	50%/Hz	
Step e) 50.70 Hz ±0.10 Hz	1579W	50.70Hz			
Step f) 50.25 Hz ±0.05 Hz	2049W	50.25Hz			
Step g) 50.00 Hz ±0.01 Hz	2056W	50.00Hz			
Steps as defined in EN 5043	8			-	

MATERIALS & SAFETY - R&D

TR 31317

page 18 of 19

Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and under steady state conditions.								
Test sequence	Measured Active Power Output	Frequency	Primary power source					
Test a) 50 Hz ± 0.01 Hz	4000W	50Hz	4.2kW					
Test b) Point between 49.5 Hz and 49.6 Hz	4000W	49.55Hz	4.2kW					
Test c) Point between 47.5 Hz and 47.6 Hz	4000W	47.55Hz	4.2kW					
NOTE: The operating point	in Test (b) and (c) shall b	e maintained for a	at least 5 minutes					

Re-connection timer.						
Test should prove that the reconnection sequence starts after a minimum delay of 60 s for						
restoration o	restoration of voltage and frequency to within the stage 1 settings of Table 2.					
Time delay	Measured		Checks on no	reconnection wh	nen voltage or fre	equency is
setting	delay		brought to just	outside stage 1	limits of table 2	
60.0s	93.2s	At 257.0 V At 191.5 V At 47.9 Hz At 52.1 Hz				At 52.1 Hz
Confirmation that the Micro-generator		Confirmed	Confirmed	Confirmed	Confirmed	
does not re-co	does not re-connect.					

Fault level contribution: These tests shall be carried out in accordance with EREC							
G98 Annex A1 A.1.3.5 (Ir	nverter co	nnected)	and Annex A	2 A.2.3.4	(Synchronous).		
For machines with electro-mag	gnetic output		For Inverte	r output			
Parameter	Symbol	Value	Time after fault	Volts	Amps		
Peak Short Circuit current	i p		20ms	4.24	49.4		
Initial Value of aperiodic current	A		100ms	3.6	22.4		
Initial symmetrical short- circuit current*	І _к		250ms	3.43	14.3		
Decaying (aperiodic) component of short circuit current*	i _{DC}		500ms	3.4	10.3		
Reactance/Resistance Ratio of source*	×/		Time to trip	0.110	In seconds		

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	

@BCL@EC0FBA7E.doc

MATERIALS & SAFETY - R&D

TR 31317

page 19 of 19

Additional comments